Gidajen da ke cike da turɓaya sune gandun daji masu zafi inda ƙasa mai ruwa ke hana ganye da itace su lalacewa. A tsawon lokaci, wannan yana haifar da wani nau'i mai zurfi na acidic peat.[1] Ana sare manyan yankuna na waɗannan gandun daji a manyan farashi.

Dajin da ke cike da turare
peatland (en) Fassara
Bayanai
Ƙaramin ɓangare na daji, marsh (en) Fassara da tropical and subtropical moist broadleaf forests (en) Fassara
Yana haddasa peat (en) Fassara
Has characteristic (en) Fassara carbon sink (en) Fassara
Wuri
Map
 7°N 97°E / 7°N 97°E / 7; 97
Hoton tauraron dan adam na tsibirin Borneo a ranar 19 ga watan Agusta 2002, yana nuna hayaki daga gandun daji masu cin wuta

Gidajen da ke cike da turare yawanci suna kewaye da gandun daji masu ruwan sama a kan ƙasa mai kyau, da kuma gandun daji mai ruwan gishiri ko ruwan gishiri kusa da bakin teku.

Su ne wani nau'i na peatland, wanda ke adanawa da tara adadi mai yawa na carbon a matsayin kwayoyin halitta na ƙasa - fiye da gandun daji a kan ƙasa mai ma'adinai (watau wanda ba shine ƙasa) da ke ciki. Tsarin peat shine sink na halitta na carbon; saboda lalacewar kwayoyin halitta yana da jinkiri fiye da yawan samar da shi, raguwa yana tarawa a matsayin peat. Tsayinsu yana da muhimmiyar tasiri ga Canjin yanayi; suna daga cikin manyan wuraren ajiyar carbon na ƙasa.[1] Gidajen da ke da zafi, waɗanda ke da muhimmancin muhalli, suna ɗaya daga cikin waɗanda aka fi barazana, duk da haka ba a yi nazari sosai ba kuma ba a fahimta sosai ba.

Tun daga shekarun 1970s, sare gandun daji na wurare masu zafi da kuma zubar da ruwa sun karu sosai a Kudu maso Gabashin Asiya.[2] Bugu da kari, El Niño Southern Oscillation (ENSO) fari da manyan gobara suna hanzarta lalacewar peatland. Wutar peat, magudanar ruwa da kuma sare daji yana inganta lalacewar kwayoyin ƙasa, yana ƙara sakin carbon da aka adana a cikin yanayi a matsayin carbon dioxide.[3]

Gidajen da ke cikin tsaunuka na wurare masu zafi suna da dubban dabbobi da tsire-tsire, gami da nau'o'in da ba su da yawa kuma suna cikin haɗari kamar Orangutan da Sumatran tiger, waɗanda wuraren zama suna fuskantar barazanar lalacewar tsaunuka.[4]

Ana samun yanayin halittu na wurare masu zafi a yankuna uku: Amurka ta tsakiya, Afirka da Kudu maso Gabashin Asiya.[1] Kimanin kashi 62% na ƙasashen wurare masu zafi na duniya suna faruwa a yankin Indomalayan (80% a Indonesia, 11% a Malaysia, 6% a Papua New Guinea, da aljihu a Brunei, Vietnam, Philippines, da Thailand). [5][6] Peat a Indonesia an rarraba shi a kan tsibirai uku, Sumatra (ha miliyan 8.3), Kalimantan (ha miliyan 6.3) da Papua (ha miliyan 4.6). [7]    Kashi 36% na peat na wurare masu zafi na duniya yana faruwa a tsakiyar Kogin Kongo na Afirka.[8]

Tsarin peat na wurare masu zafi a kan ƙananan yankuna, kamar kogin kogin, ambaliyar ruwa ko tabkuna masu zurfi. Tsarin tsari yawanci yana bin matakai na hydrosere, [9] [10] tafkuna ko yankin ambaliyar ruwa ya zama eutrophicated da shuke-shuke na ruwa, sannan ya canza zuwa ruwa mai ruwa tare da ciyawa ko shrubs, kuma a ƙarshe ya kafa gandun daji wanda ke ci gaba da girma da tarawa. Peat da ke kan iyakar yankuna na dome a tsakanin dome na iya samuwa ta hanyar fadada gefe.[10][11] Wannan tarin peat sau da yawa yana samar da siffar convex da ake kira dome, wanda zai iya tashi har zuwa 4 metres (13 ft) m (13 a kan peat na bakin teku kuma har zuwa 18 metres (59 ft) a cikin peat.[9] A farkon kafuwarsa, peat ya fi yawa topogenous ko minerotrophic, yana karɓar babban shigar da abinci mai gina jiki daga koguna ko ruwa na ƙasa. Yayin da peat ya yi kauri kuma dome ya zama mai tsawo, kogin ko shigar da ruwa na ƙasa ba ya shafar saman peat, a maimakon haka suna zama ombrotrophic, kawai samun ruwa daga hazo [10] Shigarwa kawai daga ruwan sama yana haifar da ƙarancin abinci mai gina jiki da ma'adinai, musamman calcium.[7] Saboda haka peat ya zama mai ƙamshi sosai kuma kawai yana iya tallafawa ƙananan halittu da gandun daji.

Kudancin Gabashin Asiya

gyara sashe

A cikin ƙasa da bakin teku peat sun bambanta sosai a cikin shekarunsu, inda aka kafa peat na bakin teku a tsakiyar Holocene, kimanin shekaru 8000 da suka gabata.[12] Inland peat ya samo asali ne a baya a lokacin Late Pleistocene, fiye da 26000 BP.[13]  Tsarin peat na bakin teku yana da tasiri sosai ta hanyar hauhawar matakin teku tare da tarawa mai ƙarfi a kusa da 8-4000 BP lokacin da El Nino ba shi da ƙarfi.[14] Saboda Sunda Shelf yana da kwanciyar hankali, canjin matakin teku a wannan yanki yana shafar matakin teku ne kawai, kuma a lokacin glacial Karimata Strait ya bushe, yana haifar da yankin Asiya, Sumatra, Borneo da Java su zama masu haɗawa.[15] Bayan Last Glacial Maximum, wannan bakin tekun ya koma cikin ƙasa yayin da kankara ta narke, kuma a ƙarshe ya kai matakin bakin tekun zamani a kusa da 8500 BP. Don haka, shekarun da suka fi tsufa a bakin teku a wannan yankin bai kai shekaru 8500 ba.[16]

Yanayi na ciki yana da tasiri sosai ga yanayin yanayi tare da kadan ko babu tasirin hauhawar matakin teku saboda yana kusa da 15-20 sama da matakin teku, inda rikodin kwanan nan na matakin teku mafi girma ya kasance a cikin kimanin 125000 BP lokacin da matakin teku ya kasance 6 m sama da matakin zamani.[17]  Peat cores daga Sebangau, Kudancin Kalimantan ya nuna jinkirin girma na 0.04 mm / y a kusa da 13000 BP lokacin da yanayi ya fi sanyi, sannan ya hanzarta zuwa 2.55mm / y a kusan 9900 BP a cikin zafi na Farko Holocene, sannan ya sake jinkirta zuwa 0.23-0.15 mm / y yayin El Nino mai tsanani.[18]    Ana lura da irin wannan tsari a cikin ƙwayoyin daga Sentarum, West Kalimantan, inda peat ke nuna saurin girma a kusa da 28-16000 BP, 13-3000 BP da kuma 5-3000 BP.[19] Duk da yake ci gaban da ya fi jinkiri daga 28 zuwa 16000 BP da 5-3000 BP an bayyana shi ta hanyar yanayin da ya fi bushewa a wannan lokacin saboda Heinrich Event I da fitowar El Niño . [20][21]

Manazarta

gyara sashe
  1. 1.0 1.1 Page, Susan E.; Rieley, John O.; Banks, Christopher J. (2011-02-01). "Global and regional importance of the tropical peatland carbon pool". Global Change Biology. 17 (2): 798–818. Bibcode:2011GCBio..17..798P. doi:10.1111/j.1365-2486.2010.02279.x. ISSN 1365-2486. S2CID 86121682.
  2. Murdiyarso, Daniel; Lilleskov, Erik; Kolka, Randy (2019-04-01). "Tropical peatlands under siege: the need for evidence-based policies and strategies". Mitigation and Adaptation Strategies for Global Change. 24 (4): 493–505. doi:10.1007/s11027-019-9844-1. ISSN 1573-1596.
  3. Bell, Loren (2014-07-20). "What is peat swamp, and why should I care?". Mongabay Environmental News. Retrieved 2023-09-19.
  4. "Peatland Treasures – Wetlands International". wetlands.org. Archived from the original on 22 October 2014. Retrieved 15 April 2018.
  5. Rieley JO, Ahmad-Shah AA Brady MA (1996) The extent and nature of tropical peat swamps. In: Maltby E, Immirzi CP, Safford RJ (eds) Tropical lowland peatlands of Southeast Asia, proceedings of a workshop on integrated planning and management of tropical lowland peatlands held at Cisarua, Indonesia, 3–8 July 1992. IUCN, Gland, Switzerland
  6. Page SE, Rieley JO, Wüst R (2006) Lowland tropical peatlands of Southeast Asia In: Martini IP, Martínez Cortizas A, Chesworth W (eds) Peatlands: Evolution and Records of Environmental and Climate Changes. Elsevier BV pp 145-172
  7. 7.0 7.1 Page, S. E.; Rieley, J. O.; Shotyk, Ø W.; Weiss, D. (1999-11-29). "Interdependence of peat and vegetation in a tropical peat swamp forest". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 354 (1391): 1885–1897. doi:10.1098/rstb.1999.0529. ISSN 0962-8436. PMC 1692688. PMID 11605630.
  8. Crezee, Bart; Dargie, Greta C.; Ewango, Corneille E. N.; Mitchard, Edward T. A.; Emba B., Ovide; Kanyama T., Joseph; Bola, Pierre; Ndjango, Jean-Bosco N.; Girkin, Nicholas T.; Bocko, Yannick E.; Ifo, Suspense A.; Hubau, Wannes; Seidensticker, Dirk; Batumike, Rodrigue; Imani, Gérard (21 July 2022). "Mapping peat thickness and carbon stocks of the central Congo Basin using field data". Nature Geoscience. 15 (8): 639–644. doi:10.1038/s41561-022-00966-7. ISSN 1752-0908. |hdl-access= requires |hdl= (help)
  9. 9.0 9.1 Anderson, J. A. R. (1963). "The structure and development of the peat swamps of Sarawak and Burunei". Journal of Tropical Geography. 18: 7–16.
  10. 10.0 10.1 10.2 Cameron, C. C.; Esterle, J. S.; Palmer, C. A. (1989). "The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes". International Journal of Coal Geology. 12 (1–4): 105–156. Bibcode:1989IJCG...12..105C. doi:10.1016/0166-5162(89)90049-9.
  11. Klinger, L. F. (1996). "The myth of the classic hydrosere model of bog succession". Arctic and Alpine Research. 28 (1): 1–9. doi:10.2307/1552080. JSTOR 1552080. S2CID 56423055.
  12. Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. (2008). "Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia". CATENA. 73 (2): 212–224. Bibcode:2008Caten..73..212W. doi:10.1016/j.catena.2007.07.010.
  13. Anshari, G. (2001). "A Late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia". Palaeogeography, Palaeoclimatology, Palaeoecology. 171 (3–4): 213–228. Bibcode:2001PPP...171..213A. doi:10.1016/S0031-0182(01)00246-2.
  14. Yu, Z.; Loisel, J.; Brosseau, D. P.; Beilman, D. W.; Hunt, S.e J. (2010). "Global peatland dynamics since the Last Glacial Maximum". Geophysical Research Letters. 37 (13): n/a. Bibcode:2010GeoRL..3713402Y. doi:10.1029/2010gl043584.
  15. Smith, D. E.; Harrison, S.; Firth, C. R.; Jordan, J. T. (2011). "The early Holocene sea level rise". Quaternary Science Reviews. 30 (15–16): 1846–1860. Bibcode:2011QSRv...30.1846S. doi:10.1016/j.quascirev.2011.04.019.
  16. Dommain, R.; Couwenberg, J.; Joosten, H. (2011). "Development and carbon sequestration of tropical peat domes in South-east Asia: links to post-glacial sea-level changes and Holocene climate variability". Quaternary Science Reviews. 30 (7–8): 999–1010. Bibcode:2011QSRv...30..999D. doi:10.1016/j.quascirev.2011.01.018.
  17. Woodroffe, S. A.; Horton, B.P. (2005). "Holocene sea-level changes in the Indo-Pacific". Journal of Asian Earth Sciences. 25 (1): 29–43. Bibcode:2005JAESc..25...29W. CiteSeerX 10.1.1.693.8047. doi:10.1016/j.jseaes.2004.01.009.
  18. Page, S. E.; Wűst, R. A. J.; Weiss, D.; Rieley, J. O.; Shotyk, W.; Limin, S. H. (2004). "A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics". Journal of Quaternary Science. 19 (7): 625–635. Bibcode:2004JQS....19..625P. doi:10.1002/jqs.884. S2CID 128632271.
  19. Anshari, G.; Peter Kershaw, A.; Van Der Kaars, S.; Jacobsen, G. (2004). "Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia". Journal of Quaternary Science. 19 (7): 637–655. Bibcode:2004JQS....19..637A. doi:10.1002/jqs.879. S2CID 129462980.
  20. Partin, J. W.; Cobb, K. M.; Adkins, J. F.; Clark, B. and Fernandez, D. P. (2007). "Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum". Nature. 449 (7161): 452–5. Bibcode:2007Natur.449..452P. doi:10.1038/nature06164. PMID 17898765. S2CID 128764777.CS1 maint: multiple names: authors list (link)
  21. Gagan, M. K.; Hendy, E. J.; Haberle, S. G.; Hantoro, W. S. (2004). "Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation". Quaternary International. 118–119: 127–143. Bibcode:2004QuInt.118..127G. doi:10.1016/S1040-6182(03)00134-4.