Bioplastics kayan filastik ne da aka samar daga tushen biomass mai sabuntawa, kamar su kitse na kayan lambu da mai, starch" id="mwFA" rel="mw:WikiLink" title="Corn starch">starch na masara, kara, woodchips, sawdust, sharar abinci da aka sake amfani da su, da dai sauransu. Ana samun wasu bioplastics ta hanyar sarrafawa kai tsaye daga Biopolymers na halitta ciki har da polysaccharides (misali, starch, cellulose, chitosan, da Alginate) da sunadarai (misali), yayin da suka samo asali daga sukari ko kuma shuke-shuke da suka zama sinadarin sukari, sinadarin sinadarin (sugar, sinadarai) (sugar da sinadarin da sinadarai, sinadurin sinadarin) (samar, sinadari, sinadaran (misali) (s. Sabanin haka, filastik na yau da kullun, kamar filastik mai burbushin halittu (wanda ake kira polymers na man fetur) an samo su ne daga man fetur ko iskar gas.

Kayan filastik da za a iya lalata suKayan aiki
Rufewar furanni da akayi da PLA-blend bio-flex
rabe raben kayan roba

Ɗaya daga cikin fa'idodin bioplastics shine 'yancin kansu daga man fetur a matsayin albarkatun kasa, wanda shine iyaka kuma ba'a rarraba shi ba'a duniya wanda keda alaƙa da siyasar man fetur da Tasirin muhalli. Nazarin nazarin sake zagayowar rayuwa ya nuna cewa ana iya yin wasu bioplastics tare da ƙananan sawun carbon fiye da takwarorinsu na burbushin halittu, misali lokacin da ake amfani da biomass a matsayin albarkatun kasa da kuma samar da makamashi. Koyaya, wasu hanyoyin bioplastics basu da inganci kuma suna haifar da sawun carbon mafi girma fiye da burbushin filastik. [1] [2][3]

Bambanci tsakanin filastik daba na burbushin halittu ba (bio) da filastik na burbushi yana da iyakacin dacewa tunda kayan kamar man fetur kansu kawai burbushin burbushin halitta ne. Saboda haka, ko kowane irin filastik yana da lalacewa ko wanda ba zai iya lalacewa ba (mai dorewa) ya dogara da tsarin kwayoyinsa, ba'a kan ko biomass dake samar da albarkatun kasa ya zama burbushin ba. Dukkanin bioplastics masu ɗorewa, kamar su Bio-PET ko polyethylene" id="mwOQ" rel="mw:WikiLink" title="Biopolyethylene">biopolyethylene (masu kama da polyethylene terephthalate da polyethylene na burbushin halittu), da bioplastics mai lalacewa, kamar Polylactic acid, polybutylene succinate, ko polyhydroxyalkanoates, sun wanzu. Bioplastics dole ne a sake amfani dasu kamar filastik na burbushin halittu don kauce wa gurɓata filastik; "sauka-in" bioplastics (kamar biopolyethylene) ya dace da kogunan sake amfani da yanzu. A gefe guda, sake amfani da kwayoyin halitta a cikin kogunan sake amfani na yanzu yana haifar da ƙarin ƙalubale, saboda yana iya haɓaka farashin rarrabawa da rage amfanin gona da ingancin sake amfani. Koyaya, biodegradation ba shine kawai hanyar da aka yarda da ita ba don maganin halittu mai lalacewa, kuma sake amfani da inji da sinadarai galibi shine zaɓi da aka fi so daga ra'ayin muhalli.[4]

Biodegradability na iya bada hanyar ƙarshen rayuwa a wasu aikace-aikace, kamar su mulch na noma, amma manufar biodegradation ba ta da sauƙi kamar yadda mutane da yawa suka yi imani. Samun yiwuwar biodegradation ya dogara sosai da tsarin kashin sinadarai na polymer, kuma bioplastics daban-daban suna da tsari daban-daban, don haka ba za'a iya ɗauka cewa bioplastic a cikin muhalli zai rushe cikin sauƙi ba. Hakanan, ana iya haɗa filastik masu narkewa daga man fetur.[1][5]

Ya zuwa 2018, bioplastics ya wakilci kusan 2% na fitar da filastik na duniya (> tan miliyan 380). [6] Tare da cigaba da bincike kan bioplastics, saka hannun jari a cikin kamfanonin bioplastic da haɓaka bincike kan filastik na burbushin burbushin halittu, bioplastics suna zama mafi rinjaye a wasu kasuwanni, yayin da fitar da filastik burbushin kuma ke ƙaruwa a hankali.

Ma'anar IUPAC

gyara sashe

Ƙungiyar Ƙasashen Duniya ta Pure da Applied Chemistry ta bayyana polymer mai laushi kamar haka:

  1. 1.0 1.1 Rosenboom, Jan-Georg; Langer, Robert; Traverso, Giovanni (2022-02-20). "Bioplastics for a circular economy". Nature Reviews Materials (in Turanci). 7 (2): 117–137. Bibcode:2022NatRM...7..117R. doi:10.1038/s41578-021-00407-8. ISSN 2058-8437. PMC 8771173 Check |pmc= value (help). PMID 35075395 Check |pmid= value (help).
  2. Walker, S.; Rothman, R. (2020-07-10). "Life cycle assessment of bio-based and fossil-based plastic: A review". Journal of Cleaner Production (in Turanci). 261: 121158. doi:10.1016/j.jclepro.2020.121158. ISSN 0959-6526. S2CID 216414551. |hdl-access= requires |hdl= (help)
  3. Pellis, Alessandro; Malinconico, Mario; Guarneri, Alice; Gardossi, Lucia (2021-01-25). "Renewable polymers and plastics: Performance beyond the green". New Biotechnology (in Turanci). 60: 146–158. doi:10.1016/j.nbt.2020.10.003. ISSN 1871-6784. PMID 33068793. S2CID 224321496.
  4. Fredi, Giulia; Dorigato, Andrea (2021-07-01). "Recycling of bioplastic waste: A review". Advanced Industrial and Engineering Polymer Research (in Turanci). 4 (3): 159–177. doi:10.1016/j.aiepr.2021.06.006. S2CID 237852939 Check |s2cid= value (help). |hdl-access= requires |hdl= (help)
  5. "Bioplastics (PLA) - World Centric". worldcentric.org. Archived from the original on 2019-03-09. Retrieved 2018-07-15.
  6. Chinthapalli, Raj; Skoczinski, Pia; Carus, Michael; Baltus, Wolfgang; de Guzman, Doris; Käb, Harald; Raschka, Achim; Ravenstijn, Jan (2019-08-01). "Biobased Building Blocks and Polymers—Global Capacities, Production and Trends, 2018–2023". Industrial Biotechnology. 15 (4): 237–241. doi:10.1089/ind.2019.29179.rch. ISSN 1550-9087. S2CID 202017074.

Aikace-aikacen da aka gabatar

gyara sashe
 
Kayayyakin akwatin da akayi daga bioplastics da sauran filastik masu lalacewa

Akwai aikace-aikacen kasuwanci kaɗan don bioplastics. Farashi da aiki sun kasance matsala. Misali na Italiya ne, inda jakunkunan filastik masu lalacewa suka zama tilas ga masu siye tun daga 2011 tare da gabatar da takamaiman doka.[1] Baya ga kayan tsari, ana haɓaka bioplastics na lantarki wanda ke alkawarin ɗaukar wutar lantarki.[2]

Ana amfani da kwayoyin halitta don abubuwan da za'a iya zubar dasu, kamar marufi, kayan kwalliya, tukwane, kwano, da kara.[3]

Biopolymers suna samuwa a matsayin murfin takarda maimakon murfin man fetur na yau da kullun.[4]

Bioplastics da ake kira drop-in bioplastics suna da sunadarai iri ɗaya da takwarorinsu na burbushin halittu amma anyi sune daga albarkatun sabuntawa. Misalan sun hada da bio-PE, bio-PET, bio-propylene, bio-PP, [5] da kuma biobased nylons. [6] [7][8] Ana iya amfani da kayan aikin bioplastics da ke cikin fasaha.[9] Hanyar da aka keɓe ta hanyar rayuwa tana ba da damar samar da samfuran da baza'a iya samun su bata hanyar halayen sunadarai na gargajiya kuma suna iya ƙirƙirar samfuran dake da halaye na musamman da mafi girma, idan aka kwatanta da hanyoyin da suka dace da burbushin halittu.[8]

Polysaccharide-based bioplastics

gyara sashe

Gilashin da aka samo asali

gyara sashe
 
Ruwan kwalliya da akayi daga bioplastics (thermoplastic starch)

Thermoplastic starch yana wakiltar mafi yawan amfani da bioplastic, wanda ya zama kusan kashi 50 cikin 100 na kasuwar bioplastics.[10] Za'a iya yin fim din bioplastic mai sauƙi a gida ta hanyar gelatinizing starch da kuma Maganin gyare-gyare.[11] Tsarkake starch yana iya shan danshi, kuma saboda haka kayan da suka dace don samar da magungunan magunguna ta bangaren magunguna. Koyaya, tsattsarkan kwayoyin halitta masu tsabta suna da rauni. Plasticizer irin su glycerol, glycol, da sorbitol kuma ana iya ƙara su don a iya sarrafa starch ta hanyar thermo-plastically.[12] Ana iya daidaita halaye na sakamakon bioplastic (wanda ake kira "thermoplastic starch") don takamaiman buƙatu ta hanyar daidaita adadin waɗannan abubuwan. Ana iya amfani da dabarun sarrafa polymer na al'ada don aiwatar da starch a cikin bioplastic, kamar extrusion, injection molding, matsa lamba molding da kuma warwarewa simintin.[12] Abubuwan dake tattare da starch bioplastic suna da tasiri sosai ta hanyar amylose / amylopectin ratio. Gabaɗaya, starch mai ƙarfi yana haifar da kyawawan halaye na inji.[13] Koyaya, starch mai girma yana da ƙarancin sarrafawa saboda yawan zafin jiki na gelatinization da ƙaranci mai narkewa. [14][15]

Sau dayawa ana haɗa kwayoyin halitta na Starch tare da polyesters masu lalacewa don samar da starch / polylactic acid, [16] starch / polykrolactone [17] ko starch / Ecoflex [18] (polybutylene adipate-co-terephthalate wanda BASF [19] ya samar). Ana amfani da waɗannan cakuda don aikace-aikacen masana'antu kuma ana iya yin compostable. Sauran masu samarwa, kamar Roquette, sun haɓaka wasu cakuda starch / polyolefin. Wadannan cakuda ba su da biodegradable, amma suna da ƙananan sawun carbon fiye da filastik na man fetur da akayi amfani da su don aikace-aikace iri ɗaya.[20]

Starch yana da arha, mai yawa, kuma mai sabuntawa.

Fim din da aka samo asali (wanda akafi amfani dashi don dalilai na marufi) galibi ana yin su ne daga starch da aka gauraya da polyesters na thermoplastic don samar da kayayyakin biodegradable da compostable. Ana ganin waɗannan fina-finai musamman a cikin kayan masarufi na mujallu da fina-ffinai. A cikin Kunshin abinci, ana ganin waɗannan fina-finai a matsayin burodi ko jakar 'ya'yan itace da kayan lambu. Ana amfani da jaka masu hadawa tare da wannan fina-finai a cikin zaɓaɓɓen tattara sharar gida. Bugu da ƙari, ana iya amfani da fina-finai na starch a matsayin takarda.[21][22]

An yi nazarin nanocomposites na Starch-based a ko'ina, suna nuna ingantaccen kayan aikin inji, kwanciyar hankali na zafi, juriya na danshi, da kuma kayan shingen gas.[23]

Gilashin dake dauke da cellulose

gyara sashe
 
Blisin kunshe-kunshe da akayi da cellulose acetate, bioplastic

Cellulose bioplastics galibi sune cellulose esters (ciki har da cellulose acetate da nitrocellulose) da abubuwan da suka samo asali, gami da celluloid.

Cellulose na iya zama thermoplastic lokacin da aka canza shi sosai. Misali na wannan shine cellulose acetate, wanda yake da tsada sabili da haka ba'a amfani dashi don marufi. Koyaya, fiber na cellulosic da aka kara zuwa starches na iya inganta kaddarorin inji, permeability ga gas, da juriya na ruwa saboda kasancewa ƙasa da hydrophilic fiye da starch.

Wata kungiya a Jami'ar Shanghai ta sami damar gina sabon filastik mai kore wanda ya dogara da cellulose ta hanyar hanyar da ake kira matsin zafi.[24]

Gilashin dake da tushen furotin

gyara sashe
 
Cigaban fim din casein mai cin abinci a USDA [25]

Bioplastics za'a iyayin su daga sunadarai daga tushe daban-daban. Misali, gluten na alkama da casein suna nuna kyawawan halaye a matsayin albarkatun kasa don polymers daban-daban masu lalacewa.[26]

Bugu da ƙari, ana ɗaukar furotin soya a matsayin wani tushen bioplastic. Anyi amfani da sunadarai na soya a cikin samar da filastik sama da shekaru ɗari. Misali, bangarorin jiki na motar Ford ta asali anyi su ne da filastik na soya.[27]

Akwai matsaloli tare da amfani da filastik na soya mai gina jiki saboda ƙarancin ruwa da tsada mai yawa. Sabili da haka, samar da cakuda furotin soya tare da wasu polyesters masu lalacewa da suka riga sun kasance yana inganta ƙwarewar ruwa da tsada.[28]

Wasu polyesters na aliphatic

gyara sashe

Aliphatic biopolyesters galibi polyhydroxyalkanoates (PHAs) ne kamar poly-3-hydroxybutyrate (PHB), polyhydrexyvalerate (PHV) da polyhydроxyhexanoate (PHH).

Polylactic acid (PLA)

gyara sashe
 
Fim din Mulch da aka yi da Polylactic acid (PLA) -blend bio-flex

Polylactic acid (PLA) filastik ne mai haske wanda aka samar daga masara [29] ko dextrose . A saman, yana kama da filastik na al'ada na petrochemical kamar PS. An samo shine daga tsire-tsire, kuma yana raguwa a ƙarƙashin yanayin masana'antu. Abin takaici, yana nuna ƙarfin tasirin ƙasa, ƙarfin zafi, da kuma abubuwan shingen (toshe jigilar iska a fadin membrane) idan aka kwatanta da filastik marasa lalacewa. Haɗuwa da PLA yawanci suna zuwa a cikin nau'ikan granulates. Ana amfani da PLA a kan iyakantaccen sikelin don samar da fina-finai, fiber, kwantena na filastik, kofuna, da kwalabe. PLA kuma shine mafi yawan nau'in filastik da akayi amfani dashi don yin samfurin igiya a cikin na'urorin bugawa na 3D.

Poly-3-hydroxybutyrate

gyara sashe

biopolymer poly-3-hydroxybutyrate (PHB) polyester ne wanda wasu kwayoyin cuta ke samar da glucose, starch na masara [30] ko ruwa mai guba. [31] Halayensa suna kama da na polypropylene (PP). Fitar da PHB yana ƙaruwa. Masana'antar sukari ta Kudancin Amurka, alal misali, ta yanke shawarar fadada samar da PHB zuwa sikelin masana'antu. PHB ya bambanta da farko ta hanyar halaye na jiki. Ana iya sarrafa shi a cikin fim mai haske tare da narkewa sama da digiri 130 na Celsius, kuma yana iya lalacewa batare da raguwa ba.

Polyhydroxyalkanoates

gyara sashe

Polyhydroxyalkanoates (PHA) sune polyesters na layi wanda aka samar a cikin yanayi ta hanyar fermentation na sukari ko lipids. Kwayoyin cuta ne ke samar da su don adana carbon da makamashi. A cikin samar da masana'antu, ana cire polyester kuma an tsarkake shi daga ƙwayoyin cuta ta hanyar inganta yanayin fermentation na sukari. Fiye da 150 daban-daban monomers za'a iya haɗawa a cikin wannan iyali don ba da kayan dake da kyawawan halaye daban-daban. PHA yafi ductile kuma bashi da ƙarfi fiye da sauran filastik, kuma yana da biodegradable. Ana amfani da waɗannan filastik a masana'antar kiwon lafiya.

Kashewa 11

gyara sashe

PA 11 wani abu ne wanda aka samo daga man fetur. An kuma san shi a ƙarƙashin sunan kasuwanci Rilsan B, wanda Arkema ke kasuwanci. PA 11 na cikin dangin polymers na fasaha kuma ba biodegradable ba ne. Abubuwan dake ciki suna kama da na PA 12, kodayake ana rage hayaki na iskar gas da amfani da albarkatun da baza'a iya sabuntawa ba yayin samar da shi. Har ila yau, juriya ta zafi ta fi ta PA 12. Ana amfani dashi a cikin aikace-aikace masu inganci kamar layin man fetur na mota, bututun iska na pneumatic, bututun kebul na lantarki, bututun mai da gas mai sassauƙa, bututun ruwa na sarrafawa, takalma na wasanni, kayan aikin lantarki, da catheters.

Irin wannan filastik shine Polyamide 410 (PA 410), wanda aka samo kashi 70% daga man castor, a ƙarƙashin sunan kasuwanci EcoPaXX, wanda DSM ke kasuwanci.[32]PA 410 babban polyamide ne wanda ya haɗu da fa'idodin babban narkewa (kimanin 250 °C), ƙarancin danshi da kyakkyawan juriya ga abubuwa masu sinadarai daban-daban. 

Polyethylene da aka samo daga kwayoyin halitta

gyara sashe

Samfuri:PlasticsTsarin gini na asali (monomer) na polyethylene shine ethylene . Ethylene yana da kama da, kuma ana iya samo shi daga ethanol, wanda za'a iya samar dashi ta hanyar fermentation na kayan aikin gona kamar sukari ko masara. Polyethylene da aka samo daga kwayoyin halitta yana da kama da polyethylene na gargajiya - ba ya lalacewa amma ana iya sake amfani dashi.  Kungiyar sunadarai ta Brazil tayi iƙirarin cewa ta amfani da hanyar samar da polyethylene daga sukari ethanol kamawa (yana cirewa daga muhalli) tan 2.15 na CO a kowace tan na Green Polyethylene da aka samar

Abinci da aka canza ta hanyar kwayar halitta

gyara sashe

Tare da masara na GM kasancewa abinci na yau da kullun, ba abin mamaki bane cewa anyi wasu kwayoyin halitta daga wannan.

A karkashin fasahar masana'antar bioplastics akwai samfurin "masana'antar shuka", wanda ke amfani da amfanin gona da aka canza kwayoyin halitta ko kwayoyin halitta don inganta inganci.

Polyhydroxyurethanes

gyara sashe

Rashin polyamines da cyclic carbonates suna samar da polyhydroxyurethanes . [33] Ba kamar polyurethanes da aka haɗa da giciye ba, polyhydroxyurethanes dake da alaƙa da giciye suna da ka'ida mai sauƙi ga sake amfani da sake sarrafawa ta hanyar halayen transcarbamoylation.[34]

Polymers da aka samo daga lipid

gyara sashe

An kirkiro nau'ikan bioplastic dayawa daga kitse da mai da aka samo daga shuka da dabba.[35] Polyurethanes, [36] [37] polyesters, [38] epoxy resins [39] da wasu nau'ikan polymers an haɓaka su tare da kwatankwacin kaddarorin kayan mai. Cigaban da aka samu kwanan nan na olefin metathesis ya buɗe nau'ikan abinci iri-iri zuwa sauya tattalin arziki zuwa biomonomers da polymers.[40] Tare da karuwar samar da man kayan lambu na gargajiya da kuma man fetur da aka samo daga microalgae mai arha, akwai babbar damar ci gaba a wannan yanki.[41]

Tasirin muhalli

gyara sashe
 
Gilashin da aka yi da cellulose acetate biograde

Ana amfani da kayan aiki irin su starch, cellulose, itace, sukari da biomass a matsayin maye gurbin albarkatun man fetur don samar da bioplastics; wannan ya sa samar da bioplatics ya zama aiki mai ɗorewa idan aka kwatanta da samar da filastik na al'ada.[42] Sau dayawa ana muhawara game da tasirin muhalli na bioplastics, saboda akwai ma'auni daban-daban don "kore" (misali, amfani da ruwa, amfani da makamashi, sare daji, biodegradation, da dai sauransu). [43] [44][45] Saboda haka tasirin muhalli na bioplastic ana rarraba shi cikin amfani da makamashi mara sabuntawa, canjin yanayi, eutrophication da acid.[46] Samar da kwayoyin halitta yana rage fitar da iskar gas kuma yana rage amfani da makamashi mara sabuntawa.[42] Kamfanoni a duk duniya zasu iya kara dorewar muhalli na samfuran su ta hanyar amfani da bioplastics [47]

Kodayake bioplastics suna adana karin makamashi wanda baza'a iya sabuntawa ba fiye da filastik na al'ada kuma suna fitar da ƙananan iskar gas idan aka kwatanta da filastic na al'adu, bioplastics suma suna da mummunan tasirin muhalli kamar eutrophication da acidization.[46] Bioplastics suna haifar da mafi girman yiwuwar eutrophication fiye da filastik na al'ada.[46] Samar da kwayoyin halitta a lokacin ayyukan noma na masana'antu yana haifar da nitrate da phosphate don tacewa cikin jikin ruwa; wannan yana haifar da eutrophication, tsarin da jiki na ruwa ke samun wadataccen abinci mai gina jiki.[46] Eutrophication barazana ce ga albarkatun ruwa a duniya tun lokacin da yake haifar da fure mai cutarwa wanda ke haifar da wuraren da suka mutu na oxygen, yana kashe dabbobin ruwa.[48] Bioplastics kuma suna kara yawan acid.[46] Babban karuwa a cikin eutrophication da acidisation wanda bioplastics ya haifar ya haifar da amfani da taki na sinadarai a cikin noman albarkatun kasa masu sabuntawa don samar da bioplastics.[42]

Sauran tasirin muhalli na bioplastics sun haɗa da yin amfani da ƙananan ƙwayoyin cuta na ɗan adam da na ƙasa da kuma yiwuwar cutar kansa idan aka kwatanta da filastik na al'ada.[46] Koyaya, bioplastics suna yin amfani da mafi girman ecotoxicity na ruwa fiye da kayan al'ada.[46] Bioplastics da sauran kayan da suka danganci halittu suna kara raguwar ozone na stratospheric idan aka kwatanta da filastik na al'ada; wannan shine sakamakon fitar da nitrous oxide yayin aikace-aikacen taki yayin aikin gona na masana'antu don samar da biomass.[46] takin zamani yana ƙara hayakin nitrous oxide musamman lokacin da amfanin gona ba ya buƙatar duk nitrogen.[49] Ƙananan tasirin muhalli na bioplastics sun haɗa da guba ta hanyar amfani da magungunan ƙwayoyin cuta a kan amfanin gona da akayi amfani dasu don yin bioplastics.[42] Bioplastics kuma suna haifar da hayakin carbon dioxide daga motocin girbi.[42] Sauran ƙananan tasirin muhalli sun haɗa da yawan amfani da ruwa don noma, rushewar ƙasa, asarar carbon na ƙasa da asarar halittu masu yawa, kuma galibi sakamakon amfani da ƙasa ne da ke da alaƙa da bioplastics.[46] Amfani da ƙasa don samar da kwayoyin halitta yana haifar da ɓacewar carbon kuma yana ƙara farashin carbon yayin karkatar da ƙasa daga amfanin dake akwai [50]

Kodayake bioplastics suna da fa'ida sosai saboda suna rage amfani da baza'a iya sabuntawa bada kuma fitar da GHG, suna kuma shafar muhalli ta hanyar amfani da ƙasa da ruwa, ta amfani da maganin ƙwayoyin cuta da taki, eutrophication da acidization; saboda haka fifiko na mutum ga ko dai bioplastics ko filastik na al'ada ya dogara da abinda mutum ya ɗauka mafi mahimmancin tasirin muhalli.[42]

Wani batu tare da bioplastics, shine cewa wasu bioplastics ana yin su ne daga sassan amfanin gona masu cin abinci. Wannan yana sa bioplastics su yi gasa da samar da abinci saboda amfanin gona da ke samar da bioplastics ana iya amfani da su don ciyar da mutane.[51] Wadannan bioplastics ana kiransu "1st generation feedstock bioplastics".Bioplastics na ƙarni na 2 suna amfani da amfanin gona wanda ba abinci ba (abinci na cellulosic) ko kayan sharar gida daga kayan shararru na ƙarni 1 (misali man kayan lambu). Bioplastics na ƙarni na uku suna amfani da algae a matsayin kayan abinci.[52]

Biodegradation na Bioplastics

gyara sashe

Samfuri:Packaging

 
Kunshin matashin iska da akayi da PLA-blend bio-flex

Biodegradation na kowane filastik tsari ne wanda ke faruwa a tsayayyen / ruwa inda enzymes a cikin ruwa suka lalata tsayayyen.[53] Wasu nau'ikan bioplastics da filastik na al'ada dake dauke da kari suna iya lalacewa.[54] Bioplastics suna iya lalacewa a cikin mahalli daban-daban saboda haka sunfi karɓa fiye da filastik na al'ada.[55] Biodegradability na bioplastics yana faruwa a ƙarƙashin yanayi daban-daban na muhalli ciki har da ƙasa, yanayin ruwa da takin mai.[55] Dukkanin tsari da abun dake ciki na biopolymer ko bio-composite suna da tasiri a kan tsarin biodegradation, saboda haka canza abun da ke cikinsa da tsari na iya kara biodegradability.[55] Ƙasa da takin mai a matsayin yanayin muhalli sunfi dacewa a cikin biodegradation saboda yawan bambancin microbial.[55] Compoosting ba wai kawai biodegrades bioplastics yadda ya kamata ba amma kuma yana rage fitar da iskar gas.[55] Biodegradability na bioplastics a cikin mahalli mai narkewa za a iya inganta ta hanyar ƙara karin sukari mai narkewar da kara yawan zafin jiki.[55] Yanayin ƙasa a gefe guda suna da babban bambancin microorganisms wanda ke sauƙaƙa lalacewar bioplastics.[55] Koyaya, bioplastics a cikin yanayin ƙasa suna buƙatar yanayin zafi mafi girma da kuma lokaci mai tsawo don biodegrade.[55] Wasu kwayoyin halitta sun lalace yadda ya kamata a cikin ruwa da tsarin ruwa; duk da haka, wannan yana haifar da haɗari ga yanayin halittu na ruwa da ruwa mai laushi.[55] Saboda haka daidai ne a kammala cewa biodegradation na bioplastics a cikin ruwa jiki wanda ke haifar da mutuwar ruwa da ruwa mara lafiya ana iya lura da shi a matsayin daya daga cikin mummunar tasirin muhalli na bioplastic.

Bioplastics don kayan gini

gyara sashe

Ma'anar bioplastics ta samo asali ne daga farkon karni na 20. Koyaya, gagarumin cigaba yafaru a cikin shekarun 1980 da 1990 lokacin da masu bincike suka fara haɓaka filastik masu narkewa daga tushen halitta. Masana'antar gine-gine ta fara lura da yiwuwar bioplastics a ƙarshen 2000s, wanda aka motsa ta hanyar turawa ta duniya don ayyukan gine-gine masu kyau.

A cikin 'yan shekarun nan, bioplastics sun ga ci gaba mai yawa dangane da dorewa, tsada-tasiri, da aiki. Sabbin abubuwa a cikin cakuda biopolymer da sinadarai sun sanya bioplastics sunfi dacewa da aikace-aikacen gini, daga rufi zuwa kayan aikin tsari.

Aikace-aikacen A Ginin

gyara sashe
Rufewa
Ana iya amfani da kwayoyin halitta don ƙirƙirar kayan kariya masu inganci da muhalli. Polylactic acid (PLA) da polyhydroxyalkanoates (PHA) ana amfani da su don wannan dalili saboda yanayin zafi da biodegradability.[56]
Gidauniyar ƙasa
Abubuwan dake tattare da halittu, kamar waɗanda aka yi daga PLA da fiber na halitta, suna bada madaidaiciya da ɗorewa ga kayan ado na gargajiya. Suna da daraja musamman saboda ƙananan sawun carbon da sake amfani dasu.
Panels da Rufewa
Binciken Bioplastic, wanda akayi daga cakuda fiber na halitta da biopolymers, suna bada zaɓi mai kyau don rufe bango da rarraba. Wadannan kayan suna da sauƙi, masu ɗorewa, kuma ana iya tsara su don kwaikwayon kayan gargajiya kamar itace ko dutse.
Ayyuka
Ana amfani da kwayoyin halitta a cikin tsari don simintin simintin. Suna bada fa'idodi dangane da sake amfani, rage nauyi, da rage tasirin muhalli idan aka kwatanta da kayan al'ada.[57]
Ƙarfafawa
Za'a iya amfani da sinadaran Bioplastic da aka ƙarfafa tare da fiber na halitta ko wasu kayan aiki a aikace-aikacen tsari, suna bada madadin mai ɗorewa ga ƙarfe ko fiberglass.

Fa'idodin Bioplastics a cikin Gine-gine Tasirin Muhalli

gyara sashe
Rage sawun carbon
Bioplastics an samo su ne daga hanyoyin sabuntawa, wanda ke rage sawun carbon na kayan gini.
Rashin lalacewa
Yawancin bioplastics suna iya lalacewa, wanda ke taimakawa wajen rage sharar gida da gurɓata muhalli a ƙarshen rayuwarsu.
Ingancin Makamashi
Samar da kwayoyin halitta gabaɗaya yana buƙatar ƙarancin makamashi idan aka kwatanta da filastik na al'ada, ƙara rage tasirin muhalli.

Fa'idodin Tattalin Arziki

gyara sashe
Kyakkyawan albarkatu
Amfani da bioplastics na iya rage dogaro da man fetur na burbushin halittu kuma yabada gudummawa ga ingantaccen amfani da albarkatun halitta.
Cigaban Kasuwanci
Kasuwar bioplastics tana fadada, ta hanyar karuwar buƙatun kayan gini masu ɗorewa. Wannan ci gaban yana gabatar da sabbin damar tattalin arziki ga masana'antun da masu samarwa.[58]

Ƙalubalen da Ƙuntatawa

gyara sashe
Kudin
Bioplastics sau dayawa sunfi tsada don samarwa fiye da filastik na gargajiya, wanda zai iya zama shingen ga yaduwar tallafi a cikin masana'antar gine-gine mai tsada. Koyaya, anasa ran cigaban bincike da fasaha don rage farashin a tsawon lokaci.
Ayyuka
Duk da yake bioplastics sunyi gagarumin cigaba, wasu nau'ikan har yanzu suna bayan kayan gargajiya dangane da ƙarfi, tsayi, da juriya ga abubuwan muhalli kamar bayyanar UV da danshi.[59]
Ƙayyadaddun Aikace-aikace
A halin yanzu, bioplastics sun dace da iyakantaccen aikace-aikace a cikin gini. fadada amfani dasu zuwa matsayi mai mahimmanci zai buƙaci cigaba da gwaji.

Abubuwan da za su faru a nan gaba

gyara sashe

Makomar bioplastics a cikin gini tana da kyau, tare da cigaba da bincike da kirkire-kirkire masu yiwuwa su faɗaɗa aikace-aikacen su da inganta ayyukansu.[60] Yayinda masana'antar gine-gine ke karuwa da dorewa, bioplastics suna shirye su taka muhimmiyar rawa a ci gaban kayan gini masu aminci.[61]

Bioplastics suna bada zaɓi mai ɗorewa da amfani ga kayan gini na gargajiya, tare da fa'idodin muhalli da tattalin arziki. Duk da yake ƙalubalen sun kasance, musamman dangane da farashi da aiki, cigaban dake gudana a cikin fasahar bioplastic [62] yana da damar canza masana'antar gine-gine da kuma bada gudummawa ga makomar da tafi dacewa.

Masana'antu da kasuwanni

gyara sashe
 
Takalma na shayi da akayi da polylactide (PLA) (sha'irori)

Duk da yake filastik da suka danganci kayan kwayoyin halitta sun ƙera sune ta kamfanonin sunadarai a cikin karni na 20, kamfanin farko daya mai da hankali kan bioplastics - Marlborough Biopolymers - an kafa shine a 1983. Koyaya, Marlborough da sauran kamfanonin da suka biyo baya sun kasa samun nasarar kasuwanci, tare da irin wannan kamfani na farko don samun nasarar kudi na dogon lokaci shine kamfanin Novamont na Italiya, wanda aka kafa a shekarar 1989. [63]

Bioplastics sun kasance ƙasa da kashi ɗaya cikin ɗari na duk filastik da aka ƙera a duk duniya.[64][65] Yawancin bioplastics basu adana karin hayaki na carbon ba fiye da yadda ake buƙata don ƙera su.[66] An kiyasta cewa maye gurbin tan miliyan 250 na filastik da aka ƙera a kowace shekara tare da filastik na rayuwa zai buƙaci hekta miliyan 100 na ƙasa, ko kashi 7 cikin dari na ƙasar noma a Duniya. Kuma lokacin da bioplastics suka kai ƙarshen rayuwarsu, waɗanda aka tsara don zama compostable kuma ana tallata su azaman biodegradable galibi ana aika su zuwa wuraren zubar da shara saboda rashin kayan aikin composting ko rarraba sharar gida, inda suke saki methane yayin da suke rushewa anaerobically.

COPA (Kwamitin Kungiyar Aikin Gona a Tarayyar Turai) da COGEGA (Kwamnatin Aikin Gida a Tarayyen Turai) sunyi kimantawa game da yiwuwar bioplastics a bangarori daban-daban na tattalin arzikin Turai:

Yankin Tunanin shekara-shekara
Kayayyakin abinci Samfuri:Bartable
Takalma na sharar gida Samfuri:Bartable
Biodegradable mulch foils Samfuri:Bartable
Biodegradable foils for diapers Samfuri:Bartable
Diapers, 100% biodegradable Samfuri:Bartable
Kunshin kwalliya Samfuri:Bartable
Kunshin kayan lambu Samfuri:Bartable
Abubuwan da ke cikin taya Samfuri:Bartable
Jimillar: 2,000,000

Tarihi da cigaban bioplastics

gyara sashe

Biobased polymer derived from the biomass or issued from monomers derived from the biomass and which, at some stage in its processing into finished products, can be shaped by flow.

Note 1: Bioplastic is generally used as the opposite of polymer derived from fossil resources.
Note 2: Bioplastic is misleading because it suggests that any polymer derived from the biomass is environmentally friendly.
Note 3: The use of the term "bioplastic" is discouraged. Use the expression "biobased polymer".
Note 4: A biobased polymer similar to a petrobased one does not imply any superiority with respect to the environment unless the comparison of respective life cycle assessments is favourable.[67]
  • 1855: First (inferior) version of linoleum produced
  • 1862: At the Great London Exhibition, Alexander Parkes displays Parkesine, the first thermoplastic. Parkesine is made from nitrocellulose and had very good properties, but exhibits extreme flammability. (White 1998)[68]
  • 1897: Still produced today, Galalith is a milk-based bioplastic that was created by German chemists in 1897. Galalith is primarily found in buttons. (Thielen 2014)
  • 1907: Leo Baekeland invented Bakelite, which received the National Historic Chemical Landmark for its non-conductivity and heat-resistant properties. It is used in radio and telephone casings, kitchenware, firearms and many more products. (Pathak, Sneha, Mathew 2014)
  • 1912: Brandenberger invents Cellophane out of wood, cotton, or hemp cellulose. (Thielen 2014)[69]
  • 1920s: Wallace Carothers finds Polylactic Acid (PLA) plastic. PLA is incredibly expensive to produce and is not mass-produced until 1989. (Whiteclouds 2018)
  • 1925: Polyhydroxybutyrate was isolated and characterised by French microbiologist Maurice Lemoigne
  • 1926: Maurice Lemoigne invents polyhydroxybutyrate (PHB) which is the first bioplastic made from bacteria. (Thielen 2014)[69]
  • 1930s: The first bioplastic car was made from soy beans by Henry Ford. (Thielen 2014)[69][70]
  • 1940-1945: During World War II, an increase in plastic production is seen as it is used in many wartime materials. Due to government funding and oversight the United States production of plastics (in general, not just bioplastics) tripled during 1940-1945 (Rogers 2005).[71] The 1942 U.S. government short film The Tree in a Test Tube illustrates the major role bioplastics played in the World War II victory effort and the American economy of the time.
  • 1950s: Amylomaize (>50% amylose content corn) was successfully bred and commercial bioplastics applications started to be explored. (Liu, Moult, Long, 2009) A decline in bioplastic development is seen due to the cheap oil prices, however the development of synthetic plastics continues.
  • 1970s: The environmental movement spurred more development in bioplastics. (Rogers 2005)[71]
  • 1983: The first bioplastics company, Marlborough Biopolymers, is started which uses a bacteria-based bioplastic called biopal. (Feder 1985)[72]
  • 1989: The further development of PLA is made by Dr. Patrick R. Gruber when he figures out how to create PLA from corn. (Whiteclouds 2018). The leading bioplastic company is created called Novamount. Novamount uses matter-bi, a bioplastic, in multiple different applications. (Novamount 2018)
  • Late 1990s: The development of TP starch and BIOPLAST from research and production of the company BIOTEC lead to the BIOFLEX film. BIOFLEX film can be classified as blown film extrusion, flat film extrusion, and injection moulding lines. These three classifications have applications as follows: Blown films - sacks, bags, trash bags, mulch foils, hygiene products, diaper films, air bubble films, protective clothing, gloves, double rib bags, labels, barrier ribbons; Flat films - trays, flower pots, freezer products and packaging, cups, pharmaceutical packaging; Injection moulding - disposable cutlery, cans, containers, performed pieces, CD trays, cemetery articles, golf tees, toys, writing materials. (Lorcks 1998)[73]
  • 1992: It is reported in Science that PHB can be produced by the plant Arabidopsis thaliana. (Poirier, Dennis, Klomparens, Nawrath, Somerville 1992)[74]
  • 2001: Metabolix inc. purchases Monsanto's biopol business (originally Zeneca) which uses plants to produce bioplastics. (Barber and Fisher 2001)[75]
  • 2001: Nick Tucker uses elephant grass as a bioplastic base to make plastic car parts. (Tucker 2001)
  • 2005: Cargill and Dow Chemicals is rebranded as NatureWorks and becomes the leading PLA producer. (Pennisi 2016)[76]
  • 2007: Metabolix inc. market tests its first 100% biodegradable plastic called Mirel, made from corn sugar fermentation and genetically engineered bacteria. (Digregorio 2009)[77]
  • 2012: A bioplastic is developed from seaweed proving to be one of the most environmentally friendly bioplastics based on research published in the journal of pharmacy research. (Rajendran, Puppala, Sneha, Angeeleena, Rajam 2012)
  • 2013: A patent is put on bioplastic derived from blood and a crosslinking agent like sugars, proteins, etc. (iridoid derivatives, diimidates, diones, carbodiimides, acrylamides, dimethylsuberimidates, aldehydes, Factor XIII, dihomo bifunctional NHS esters, carbonyldiimide, glyoxyls [sic], proanthocyanidin, reuterin). This invention can be applied by using the bioplastic as tissue, cartilage, tendons, ligaments, bones, and being used in stem cell delivery. (Campbell, Burgess, Weiss, Smith 2013)[78][79]
  • 2014: It is found in a study published in 2014 that bioplastics can be made from blending vegetable waste (parsley and spinach stems, the husks from cocoa, the hulls of rice, etc.) with TFA solutions of pure cellulose creates a bioplastic. (Bayer, Guzman-Puyol, Heredia-Guerrero, Ceseracciu, Pignatelli, Ruffilli, Cingolani, and Athanassiou 2014)[80]
  • 2016: An experiment finds that a car bumper that passes regulation can be made from nano-cellulose based bioplastic biomaterials using banana peels. (Hossain, Ibrahim, Aleissa 2016)[81]
  • 2017: A new proposal for bioplastics made from Lignocellulosics resources (dry plant matter). (Brodin, Malin, Vallejos, Opedal, Area, Chinga-Carrasco 2017)[82]
  • 2018: Many developments occur including Ikea starting industrial production of bioplastics furniture (Barret 2018), Project Effective focusing on replacing nylon with bio-nylon (Barret 2018), and the first packaging made from fruit (Barret 2018).
  • 2019: Five different types of Chitin nanomaterials were extracted and synthesized by the 'Korea Research Institute of Chemical Technology' to verify strong personality and antibacterial effects. When buried underground, 100% biodegradation was possible within six months.[83]

* ba cikakken jerin bane. Wadannan abubuwan kirkirar suna nuna bambancin bioplastics da muhimman cigaba. Sabbin aikace-aikace da abubuwan kirkirar bioplastics suna cigaba da faruwa.

Shekara Binciken Bioplastic ko Ci gaba
1862 Parkesine - Alexander Parkes
1868 Celluloid - John Wesley Hyatt
1897 Galalith - likitocin Jamus
1907 Bakelite - Leo Baekeland
1912 Cellophane - Jacques E. Brandenberger
Shekaru na 1920 Polylactic Acid (PLA) - Wallace Carothers
1926 Polyhydroxybutyrate (PHB) - Maurice Lemoigne
Shekaru na 1930 Soya-bean-based bioplastic mota - Henry Ford
1983 Biopal - Marlborough Biopolymers
1989 PLA daga masara - Dokta Patrick R. Gruber; Matter-bi - Novamount
1992 Ana iya samar da PHB ta hanyar Arabidopsis thaliana (ƙaramin shuka mai fure)
1998 Fim din Bioflex (bugawa, kwance, gyaran allura) yana haifar da aikace-aikace daban-daban na bioplastic
2001 PHB za a iya samar da shi ta hanyar giwayen
2007 Mirel (100% biodegradable filastik) ta Metabolic inc. an gwada shi a kasuwa
2012 Bioplastic an haɓaka shi ne daga albasa
2013 Bioplastic da aka yi daga jini da kuma mai haɗin giciye wanda ake amfani da shi a cikin hanyoyin kiwon lafiya
2014 Bioplastic da aka yi daga sharar kayan lambu
2016 Kamfanin mota da aka yi da kwayar cutar ayaba
2017 Bioplastics da aka yi daga albarkatun lignocellulosic (tsire mai bushe)
2018 Kayan kwalliya na bioplastic, bio-nylon, marufi daga 'ya'yan itace
 
Cibiyar Cigaban Bioplastics - Jami'ar Massachusetts Lowell
 
Fensir da akayi da bioplastics (Polylactide, PLA)

Hanyoyin gwaji

gyara sashe
 
Gilashin shampoo na bioplastic da aka yi da PLA-blend bio-flex

Kasuwancin masana'antu - EN 13432, ASTM D6400

gyara sashe

Dole ne A cikin ma'aunin masana'antu na EN 13432 don da'awar cewa samfurin filastik yana iyayin compostable a kasuwar Turai. A taƙaice, yana buƙatar gwaje-gwaje da yawa da kuma saita ka'idojin wucewa / gazawar, gami da rushewa (rugujewar jiki da gani) na abin da aka gama a cikin makonni 1, biodegradation (canja carbon zuwa CO) na sinadaran polymeric a cikin kwanaki 180, guba na shuka da ƙarfe mai nauyi. Matsayin ASTM 6400 shine tsarin tsari na Amurka kuma yana da irin wannan buƙatu.

Yawancin filastik na starch, filastik da ke PLA da wasu mahaɗan co-polyester na Aliphatic-aromatic, kamar su succinates da adipates, sun sami waɗannan takaddun shaida. Additive-based bioplastics sayar a matsayin photodegradable ko Oxo Biodegradable basu bi waɗannan ka'idoji a halin yanzu ba.

Compostability - ASTM D6002

gyara sashe

Hanyar ASTM D 6002 don ƙayyade compostability na filastik ya bayyana kalmar compostable kamar haka:

wanda ke iya fuskantar lalacewar halittu a cikin wani shafin mai mai mai mai amfani dashi don kayan baza'a iya rarrabe su ba kuma ya rushe cikin carbon dioxide, ruwa, mahaɗan inorganic da biomass a cikin adadin daya dace da sanannun kayan mai amfani.[84]

 

Wannan ma'anar ta jawo zargi da yawa saboda, sabanin yadda aka bayyana kalmar a al'ada, ya rabu da tsarin "composting" daga bukatar hakan wanda ke haifar da humus / compost a matsayin samfurin ƙarshe. Abinda kawai wannan ma'auni ya bayyana shi ne cewa filastik mai sarrafawa dole ne ya nemi yatafi da sauri kamar yadda wani abu da mutum ya riga ya kafa ya zama mai sarrafawa a ƙarƙashin ma'anar gargajiya.

. ASTM D 6002

gyara sashe

A watan Janairun 2011, ASTM ta janye ma'auni na ASTM D 6002, wanda yaba masana'antun filastik amincin doka don lakafta filastik a matsayin mai sarrafawa. Bayanansa kamar haka:

Wannan jagorar da aka rufe ta bada shawarar ka'idoji, hanyoyin, da kuma hanyar gaba ɗaya don kafa compostability na filastik masu lalacewa.[85]

ASTM har yanzu bai maye gurbin wannan ma'auni ba.

Biobased - ASTM D6866

gyara sashe

An haɓaka hanyar ASTM D6866 don tabbatar da abubuwan da aka samo daga kwayoyin halitta na bioplastics. Hasken sararin samaniya dake haɗuwa da yanayi yana nufin cewa wasu daga cikin carbon shine isotope carbon-14. CO2 daga yanayi ana amfani dashi ta shuke-shuke a cikin photosynthesis, don haka sabon kayan shuke-huke zasu ƙunshi carbon-14 da carbon-12. A karkashin yanayin daya dace, da kuma a kan lokutan geological, za'a iya canza ragowar halittu masu rai zuwa burbushin burbushin halittu. Bayan ~ shekaru 100,000 duk carbon-14 dake cikin asalin kwayoyin halitta zasu sha wahala a cikin lalacewar rediyo inda suka bar carbon-12 kawai. Samfurin da aka yi daga biomass zai sami matakin carbon-14, yayin da samfurin da akayi da sinadarin man fetur bazai sami carbon-14. Za'a iya auna kashi na carbon mai sabuntawa a cikin kayan (mai ƙarfi ko ruwa) tare da ma'aunin ma'auni mai sauri.[86][87]

Akwai muhimmiyar bambanci tsakanin biodegradability da abun ciki na biobased. A bioplastic irin su high-density polyethylene (HDPE) [88] iya zama 100% biobased (watau dauke da 100% sabunta carbon), duk da haka ba-biodegradable. Wadannan bioplastics irin su HDPE duk da haka suna taka muhimmiyar rawa a cikin rage iskar gas, musamman lokacin da aka ƙone su don samar da makamashi. Sashe na biobased na waɗannan bioplastics ana ɗaukar su carbon-neutral tunda asalin su ya fito ne daga biomass

Anaerobic biodegradability - ASTM D5511-02 da ASTM D 5526

gyara sashe

ASTM D5511-12 da ASTM D 5526-12 hanyoyin gwaji ne waɗanda suka bi ka'idodin duniya kamar ISO DIS 15985 don biodegradability na filastik.

Dubi kuma

gyara sashe

  

Manazarta

gyara sashe

 

Ƙarin karantawa

gyara sashe

Haɗin waje

gyara sashe
  1. "Consiglio dei Ministri conferma la messa al bando dei sacchetti di plastica non biodegradabili - Ministero dell'Ambiente e della Tutela del Territorio e del Mare". minambiente.it.
  2. Suszkiw, Jan (December 2005). "Electroactive Bioplastics Flex Their Industrial Muscle". News & Events. USDA Agricultural Research Service. Retrieved 2011-11-28.
  3. Chen, G.; Patel, M. (2012). "Plastics derived from biological sources: Present and future: P technical and environmental review". Chemical Reviews. 112 (4): 2082–2099. doi:10.1021/cr200162d. PMID 22188473.
  4. Khwaldia, Khaoula; Elmira Arab-Tehrany; Stephane Desobry (2010). "Biopolymer Coatings on Paper Packaging Materials". Comprehensive Reviews in Food Science and Food Safety. 9 (1): 82–91. doi:10.1111/j.1541-4337.2009.00095.x. PMID 33467805.
  5. "Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30.
  6. Duurzame bioplastics op basis van hernieuwbare grondstoffen
  7. "What are bioplastics?". Archived from the original on 2022-06-05. Retrieved 2024-07-12.
  8. 8.0 8.1 Drop in bioplastics
  9. "Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30.
  10. "Types of Bioplastic | InnovativeIndustry.net" (in Turanci). Archived from the original on 2023-04-09. Retrieved 2020-07-11.
  11. Make Potato Plastic!. Instructables.com (2007-07-26). Retrieved 2011-08-14.
  12. 12.0 12.1 Liu, Hongsheng; Xie, Fengwei; Yu, Long; Chen, Ling; Li, Lin (2009-12-01). "Thermal processing of starch-based polymers". Progress in Polymer Science (in Turanci). 34 (12): 1348–1368. doi:10.1016/j.progpolymsci.2009.07.001. ISSN 0079-6700.
  13. Li, Ming; Liu, Peng; Zou, Wei; Yu, Long; Xie, Fengwei; Pu, Huayin; Liu, Hongshen; Chen, Ling (2011-09-01). "Extrusion processing and characterization of edible starch films with different amylose contents". Journal of Food Engineering (in Turanci). 106 (1): 95–101. doi:10.1016/j.jfoodeng.2011.04.021. ISSN 0260-8774.
  14. Liu, Hongsheng; Yu, Long; Xie, Fengwei; Chen, Ling (2006-08-15). "Gelatinization of cornstarch with different amylose/amylopectin content". Carbohydrate Polymers (in Turanci). 65 (3): 357–363. doi:10.1016/j.carbpol.2006.01.026. ISSN 0144-8617. S2CID 85239192.
  15. Xie, Fengwei; Yu, Long; Su, Bing; Liu, Peng; Wang, Jun; Liu, Hongshen; Chen, Ling (2009-05-01). "Rheological properties of starches with different amylose/amylopectin ratios". Journal of Cereal Science (in Turanci). 49 (3): 371–377. doi:10.1016/j.jcs.2009.01.002. ISSN 0733-5210.
  16. Khalid, Saud; Yu, Long; Meng, Linghan; Liu, Hongsheng; Ali, Amjad; Chen, Ling (2017). "Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance". Journal of Applied Polymer Science. 134 (46): 45504. doi:10.1002/app.45504.
  17. "Starch based Bioplastic Manufacturers and Suppliers". bioplasticsonline.net. Archived from the original on August 14, 2011.
  18. Sherman, Lilli Manolis (1 July 2008). "Enhancing biopolymers: additives are needed for toughness, heat resistance & processability". Plastics Technology. Archived from the original on 17 April 2016.
  19. "BASF announces major bioplastics production expansion". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  20. "Roquette, nouvel acteur sur le marché des plastiques, lance GAÏALENE®: une gamme innovante de plastique végétal". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  21. Avant, Sandra (April 2017). "Better Paper, Plastics With Starch". USDA. Archived from the original on 2018-12-14. Retrieved 2018-12-14.
  22. Cate, Peter (January 2017). "Collaboration delivers better results". Reinforced Plastics. 61 (1): 51–54. doi:10.1016/j.repl.2016.09.002. ISSN 0034-3617.
  23. Xie, Fengwei; Pollet, Eric; Halley, Peter J.; Avérous, Luc (2013-10-01). "Starch-based nano-biocomposites". Progress in Polymer Science. Progress in Bionanocomposites: from green plastics to biomedical applications (in Turanci). 38 (10): 1590–1628. doi:10.1016/j.progpolymsci.2013.05.002. ISSN 0079-6700.
  24. Song, Na; Hou, Xingshuang; Chen, Li; Cui, Siqi; Shi, Liyi; Ding, Peng (2017-05-16). "A Green Plastic Constructed from Cellulose and Functionalized Graphene with High Thermal Conductivity". ACS Applied Materials & Interfaces. 9 (21): 17914–17922. doi:10.1021/acsami.7b02675. ISSN 1944-8244. PMID 28467836.
  25. OBrien (February 2018). "That's a Wrap: Edible Food Wraps from ARS". USDA Agricultural Research: 22. Retrieved 4 December 2021.
  26. Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H. (2009-07-27). "Biodegradable and compostable alternatives to conventional plastics". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1526): 2127–2139. doi:10.1098/rstb.2008.0289. ISSN 0962-8436. PMC 2873018. PMID 19528060.
  27. Ralston, Brian E.; Osswald, Tim A. (February 2008). "The History of Tomorrow's Materials: Protein-Based Biopolymers". Plastics Engineering. 64 (2): 36–40. doi:10.1002/j.1941-9635.2008.tb00292.x. ISSN 0091-9578.
  28. Zhang, Jinwen; Jiang, Long; Zhu, Linyong; Jane, Jay-lin; Mungara, Perminus (May 2006). "Morphology and Properties of Soy Protein and Polylactide Blends". Biomacromolecules. 7 (5): 1551–1561. doi:10.1021/bm050888p. ISSN 1525-7797. PMID 16677038.
  29. "History, Travel, Arts, Science, People, Places". smithsonianmag.com.
  30. "Mirel: PHAs grades for Rigid Sheet and Thermoforming". Archived from the original on 2012-03-31. Retrieved 2011-08-31.
  31. "Micromidas is using carefully constructed populations of bacteria to convert organic waste into bio-degradable plastics". Archived from the original on October 23, 2011.
  32. "Home". dsm.com.
  33. Nohra, Bassam; Laure Candy; Jean-Francois Blanco; Celine Guerin; Yann Raoul; Zephirin Mouloungui (2013). "From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes" (PDF). Macromolecules. 46 (10): 3771–3792. Bibcode:2013MaMol..46.3771N. doi:10.1021/ma400197c. Archived from the original (PDF) on 2020-09-18. Retrieved 2024-07-12.
  34. Fortman, David J.; Jacob P. Brutman; Christopher J. Cramer; Marc A. Hillmyer; William R. Dichtel (2015). "Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers". Journal of the American Chemical Society. 137 (44): 14019–14022. doi:10.1021/jacs.5b08084. PMID 26495769.
  35. Meier, Michael A. R.; Metzger, Jürgen O.; Schubert, Ulrich S. (2007-10-02). "Plant oil renewable resources as green alternatives in polymer science". Chemical Society Reviews. 36 (11): 1788–802. doi:10.1039/b703294c. ISSN 1460-4744. PMID 18213986.
  36. Floros, Michael; Hojabri, Leila; Abraham, Eldho; Jose, Jesmy; Thomas, Sabu; Pothan, Laly; Leao, Alcides Lopes; Narine, Suresh (2012). "Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers". Polymer Degradation and Stability. 97 (10): 1970–1978. doi:10.1016/j.polymdegradstab.2012.02.016.
  37. Pillai, Prasanth K. S.; Floros, Michael C.; Narine, Suresh S. (2017-07-03). "Elastomers from Renewable Metathesized Palm Oil Polyols". ACS Sustainable Chemistry & Engineering. 5 (7): 5793–5799. doi:10.1021/acssuschemeng.7b00517.
  38. Can, E.; Küsefoğlu, S.; Wool, R. P. (2001-07-05). "Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates". Journal of Applied Polymer Science. 81 (1): 69–77. doi:10.1002/app.1414. ISSN 1097-4628.
  39. Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J.-P.; Robin, J.-J. (2011-06-01). "A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material" (PDF). Journal of Polymer Science Part A: Polymer Chemistry. 49 (11): 2434–2444. Bibcode:2011JPoSA..49.2434S. doi:10.1002/pola.24674. ISSN 1099-0518. S2CID 78089334.
  40. Meier, Michael A. R. (2009-07-21). "Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science". Macromolecular Chemistry and Physics. 210 (13–14): 1073–1079. doi:10.1002/macp.200900168. ISSN 1521-3935.
  41. Mata, Teresa M.; Martins, António A.; Caetano, Nidia. S. (2010). "Microalgae for biodiesel production and other applications: A review". Renewable and Sustainable Energy Reviews. 14 (1): 217–232. doi:10.1016/j.rser.2009.07.020. S2CID 15481966. |hdl-access= requires |hdl= (help)
  42. 42.0 42.1 42.2 42.3 42.4 42.5 Gironi, F., and Vincenzo Piemonte. "Bioplastics and Petroleum-Based Plastics: Strengths and Weaknesses." Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 33, no. 21, 2011, pp. 1949–59, doi:10.1080/15567030903436830.
  43. Yates, Madeleine R., and Claire Y. Barlow. "Life Cycle Assessments of Biodegradable, Commercial Biopolymers - A Critical Review." Resources, Conservation and Recycling, vol. 78, Elsevier B.V., 2013, pp. 54–66, doi:10.1016/j.resconrec.2013.06.010.
  44. "Are biodegradable plastics better for the environment?". Axion. 6 February 2018. Retrieved 2018-12-14.
  45. Miles, Lindsay (22 March 2018). "Biodegradable Plastic: Is It Really Eco-Friendly?". Retrieved 2018-12-14.
  46. 46.0 46.1 46.2 46.3 46.4 46.5 46.6 46.7 46.8 Weiss, Martin, et al. "A Review of the Environmental Impacts of Biobased Materials." Journal of Industrial Ecology, vol. 16, no. SUPPL.1, 2012, doi:10.1111/j.1530-9290.2012.00468.x.
  47. Brockhaus, Sebastian, et al. "A Crossroads for Bioplastics: Exploring Product Developers' Challenges to Move beyond Petroleum-Based Plastics." Journal of Cleaner Production, vol. 127, Elsevier Ltd, 2016, pp. 84–95, doi:10.1016/j.jclepro.2016.04.003.
  48. Sinha, E., et al. "Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes." Science, vol. 357, no. July, 2017, pp. 405–08.
  49. Rosas, Francisco, et al. "Nitrous Oxide Emission Reductions from Cutting Excessive Nitrogen Fertilizer Applications." Climatic Change, vol. 132, no. 2, 2015, pp. 353–67, doi:10.1007/s10584-015-1426-y.
  50. Gironi, F., and Vincenzo Piemonte. "Land-Use Change Emissions: How Green Are the Bioplastics?" Environmental Progress & Sustainable Energy, vol. 30, no. 4, 2010, pp. 685–691, doi:10.1002/ep.10518.
  51. Cho, Renee. "The truth about bioplastics". phys.org (in Turanci). Retrieved 31 October 2021.
  52. Bioplastic Feedstock 1st, 2nd and 3rd Generations
  53. Degli-Innocenti, Francesco. "Biodegradation of Plastics and Ecotoxicity Testing: When Should It Be Done." Frontiers in Microbiology, vol. 5, no. SEP, 2014, pp. 1–3, doi:10.3389/fmicb.2014.00475.
  54. Gómez, Eddie F., and Frederick C. Michel. "Biodegradability of Conventional and Bio-Based Plastics and Natural Fiber Composites during Composting, Anaerobic Digestion and Long-Term Soil Incubation." Polymer Degradation and Stability, vol. 98, no. 12, 2013, pp. 2583–2591., doi:10.1016/j.polymdegradstab.2013.09.018.
  55. 55.0 55.1 55.2 55.3 55.4 55.5 55.6 55.7 55.8 Emadian, S. Mehdi, et al. "Biodegradation of Bioplastics in Natural Environments." Waste Management, vol. 59, Elsevier Ltd, 2017, pp. 526–36, doi:10.1016/j.wasman.2016.10.006.
  56. https://www.ecbf.vc/biodegradable-bioplastics
  57. https://plasticconcreteformwork.com/environmental-benefits-of-plastic-formwork-in-concrete-construction/
  58. https://www.vantagemarketresearch.com/industry-report/bioplastics-market-2274?trk=article-ssr-frontend-pulse_little-text-block
  59. https://primebiopol.com/bioplasticos-y-plasticos-convencionales-un-analisis-comparativo/?lang=en
  60. https://sameerabuildingconstruction.com/can-bioplastics-replace-traditional-materials-in-building/
  61. https://itechmag.org/paper/volume%201/03-08.pdf
  62. https://iopscience.iop.org/article/10.1088/1757-899X/1158/1/012008/pdf
  63. Barrett, Axel (5 September 2018). "The History and Most Important Innovations of Bioplastics". Bioplastics News.
  64. "Ready to Grow: The Biodegradable Polymers Market". Plastics Engineering. 72 (3): 1–4. March 2016. doi:10.1002/j.1941-9635.2016.tb01489.x. ISSN 0091-9578.
  65. Darby, Debra (August 2012). "Bioplastics Industry Report". BioCycle. 53 (8): 40–44.
  66. Rujnić-Sokele, Maja; Pilipović, Ana (September 2017). "Challenges and Opportunities of Biodegradable Plastics: A Mini Review". Waste Management & Research. 35 (2): 132–140. doi:10.1177/0734242x16683272. PMID 28064843. S2CID 23782848.
  67. Vert, Michel (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080. Archived from the original (PDF) on 2015-03-19. Retrieved 2013-07-17.
  68. White, J. L. (December 1998). "Fourth in a Series: Pioneers of Polymer Processing Alexander Parkes". International Polymer Processing. 13 (4): 326. doi:10.3139/217.980326. ISSN 0930-777X. S2CID 137545344.
  69. 69.0 69.1 69.2 Cite error: Invalid <ref> tag; no text was provided for refs named :0
  70. "Soybean Car - The Henry Ford". www.thehenryford.org (in Turanci). Retrieved 2020-12-09.
  71. 71.0 71.1 "A Brief History of Plastic". The Brooklyn Rail. May 2005. Retrieved 2018-09-27.
  72. "New fibre could make stronger parts". Reinforced Plastics. 39 (5): 17. May 1995. doi:10.1016/0034-3617(95)91746-2. ISSN 0034-3617.
  73. Lörcks, Jürgen (January 1998). "Properties and applications of compostable starch-based plastic material". Polymer Degradation and Stability. 59 (1–3): 245–249. doi:10.1016/s0141-3910(97)00168-7. ISSN 0141-3910.
  74. Poirier, Yves; Dennis, Douglas; Klomparens, Karen; Nawrath, Christiane; Somerville, Chris (December 1992). "Perspectives on the production of polyhydroxyalkanoates in plants". FEMS Microbiology Letters. 103 (2–4): 237–246. doi:10.1111/j.1574-6968.1992.tb05843.x. ISSN 0378-1097.
  75. "Monsanto finds buyer for oil and gas assets". Chemical & Engineering News. 63 (48): 5. 1985-12-02. doi:10.1021/cen-v063n048.p005a. ISSN 0009-2347.
  76. Pennisi, Elizabeth (1992-05-16). "Natureworks". Science News. 141 (20): 328–331. doi:10.2307/3976489. ISSN 0036-8423. JSTOR 3976489.
  77. DiGregorio, Barry E. (January 2009). "Biobased Performance Bioplastic: Mirel". Chemistry & Biology. 16 (1): 1–2. doi:10.1016/j.chembiol.2009.01.001. ISSN 1074-5521. PMID 19171300.
  78. "Nanotube technology gains US patent". Reinforced Plastics. 48 (10): 17. November 2004. doi:10.1016/s0034-3617(04)00461-8. ISSN 0034-3617.
  79. Campbell, Phil G.; Burgess, James E.; Weiss, Lee E.; Smith, Jason (18 June 2015). "Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom" (in Turanci).
  80. Bayer, Ilker S.; Guzman-Puyol, Susana; Heredia-Guerrero, José Alejandro; Ceseracciu, Luca; Pignatelli, Francesca; Ruffilli, Roberta; Cingolani, Roberto; Athanassiou, Athanassia (2014-07-15). "Direct Transformation of Edible Vegetable Waste into Bioplastics". Macromolecules. 47 (15): 5135–5143. Bibcode:2014MaMol..47.5135B. doi:10.1021/ma5008557. ISSN 0024-9297.
  81. Sharif Hossain, A.B.M.; Ibrahim, Nasir A.; AlEissa, Mohammed Saad (September 2016). "Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass". Data in Brief. 8: 286–294. doi:10.1016/j.dib.2016.05.029. ISSN 2352-3409. PMC 4906129. PMID 27331103.
  82. Brodin, Malin; Vallejos, María; Opedal, Mihaela Tanase; Area, María Cristina; Chinga-Carrasco, Gary (September 2017). "Lignocellulosics as sustainable resources for production of bioplastics – A review". Journal of Cleaner Production. 162: 646–664. doi:10.1016/j.jclepro.2017.05.209. ISSN 0959-6526. |hdl-access= requires |hdl= (help)
  83. Tran TH, Nguyen HL, Hwang DS, Lee JY, Cha HG, Koo JM, Hwang SY, Park J, Oh DX (2019). "Five different chitin nanomaterials from identical source with different advantageous functions and performances". Carbohydrate Polymers. Elsevier Science B.V., Amsterdam. 205: 392–400. doi:10.1016/j.carbpol.2018.10.089. ISSN 0144-8617. PMID 30446120. S2CID 53569630.
  84. "Compostable.info".
  85. "ASTM D6002 - 96(2002)e1 Standard Guide for Assessing the Compostability of Environmentally Degradable Plastics (Withdrawn 2011)". astm.org. Archived from the original on 2019-12-21. Retrieved 2012-09-05.
  86. "ASTM D6866 - 11 Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis". Astm.org. Retrieved 2011-08-14.
  87. "NNFCC Newsletter – Issue 16. Understanding Bio-based Content — NNFCC". Nnfcc.co.uk. 2010-02-24. Retrieved 2011-08-14.
  88. "Braskem". Braskem. Retrieved 2011-08-14.