Bioclogging ko clogging na halitta yana nufin toshe sararin samaniya a cikin ƙasa ta hanyar microbial biomass, gami da sel masu aiki da kayan su kamar su extracellular polymeric abu (EPS). Kwayoyin halittu masu ƙwayoyin cuta suna toshe sararin samaniya, suna haifar da wani nau'i mai hana ruwa a cikin ƙasa kuma suna rage yawan ruwa.

bioclogging
Bioclogging
Bayanai
Ƙaramin ɓangare na Seltation

Bioclogging yana faruwa ne a karkashin ci gaba da shiga cikin tafki a yanayi daban-daban na filin kamar tafkuna na wucin gadi, ramuka na ruwa, tashoshin ban ruwa, tsarin kula da datti, wuraren da aka gina, wuraren zubar da shara da tsarin halitta kamar kogin da ƙasa. Har ila yau, yana shafar kwararar ruwa a cikin ruwa, kamar famfo na zafi na ƙasa, shingen da ke iya shiga, da haɓaka man fetur. Bioclogging babbar matsala ce inda aka hana shigar da ruwa kuma matakan da suka dace kamar bushewa na yau da kullun na tsarin na iya rage matakan bioclogging. Koyaya, bioclogging na iya ba da amfanin dalilai a takamaiman yanayi. Misali, ana iya amfani da bioclogging don yin wani nau'i mai hana ruwa don rage yawan shiga ko don inganta kayan aikin injiniya na ƙasa.

Bayani na gaba ɗaya

gyara sashe

Canji a cikin permeability tare da lokaci

gyara sashe

Ana lura da ƙuntataccen ƙwayoyin cuta a matsayin raguwar ƙimar shiga. An lura da raguwar shigarwa a ƙarƙashin shigarwa a cikin shekarun 1940 don nazarin shigar da tafkuna na wucin gadi da ruwa ke yaduwa a kan ƙasa. Allison ya bayyana [1] cewa lokacin da ake ci gaba da nutsewa a cikin ruwa, permeability ko saturated hydraulic conductivity canzawa a cikin matakai masu mahimmanci 3:

  1. Bayan fara gwajin filin ko dakin gwaje-gwaje, ƙarancin ƙarancin ya ragu zuwa mafi ƙaranci. A kan ƙasa mai zurfi wannan raguwa na farko karami ne, ko babu shi, amma ga ƙasa mai zurfin ruwa, ƙarancin ruwa yana raguwa na kwanaki 10 zuwa 20 mai yiwuwa saboda canje-canje na jiki a cikin tsarin ƙasa.
  2. Permeability yana ƙaruwa saboda narkar da iska da aka kama a cikin ƙasa a cikin ruwa mai narkewa.
  3. Permeability yana raguwa na makonni 2 zuwa 4 saboda rushewar aggregates da ƙuƙwalwar halittu na ƙwayoyin ƙasa tare da ƙwayoyin microbial da samfuran su, slimes, ko polysaccharides.

Wannan bayanin ya dogara ne akan gwaje-gwajen da aka gudanar a wannan lokacin, kuma ainihin tsarin bioclogging ya dogara da yanayin tsarin, kamar wadatar mai karɓar abinci mai gina jiki da na lantarki, ƙaddamar da ƙirar microbial biofilm, yanayin farko, da dai sauransu. Musamman, matakai 3 ba lallai bane su bambanta a kowane yanayin filin bioclogging; lokacin da mataki na biyu bai bayyana ba, kuma permeability kawai yana ci gaba da raguwa.

Nau'o'i daban-daban na bioclogging

gyara sashe

Canjin a cikin permeability tare da lokaci ya dogara da yanayin filin kuma akwai dalilai daban-daban don canji a cikin hydraulic conductivity, [2] gami da jiki (tsayawa mai ƙarfi, rushewar tsari, da dai sauransu), sunadarai (rugujewa da kumburi na barbashi na yumɓu), da kuma abubuwan da ke haifar da halittu (kamar yadda aka jera a ƙasa). Yawancin lokaci bioclogging yana nufin na farko daga cikin masu zuwa, yayin da bioclogging a cikin ma'anar da ta fi girma yana nufin duk abubuwan da ke biyowa.

  1. Bioclogging ta jikin kwayoyin halitta (kamar ƙwayoyin cutaƙwayoyin cuta="#mwt27" class="mw-ref reference" data-cx="{}" algae [3] da fungus [4] [5]) da kuma kayan aikin su kamar su extracellular polymeric abu (EPS) [5] (wanda ake kira slime), wanda ke samar da biofilm [4] [5] ko microcolony aggregation [5] a kan barbashi na ƙasa sune abubuwan da ke haifar da kai tsaye na raguwar ruwa.[6][7][8][9][10][11]
  2. Rashin kumfa na gas kamar methane wanda aka samar da kwayoyin cuta masu samar da methane sun toshe ramin ƙasa kuma suna taimakawa wajen rage hawan ruwa.[12] Kamar yadda iskar gas kuma samfurin microbial ne, ana iya la'akari da shi a matsayin bioclogging.
  3. Kwayoyin ƙwayoyin ƙarfe suna motsa sa aka ajiye ferric oxyhydroxide wanda zai iya haifar da toshewar ƙuƙwalwar ƙasa.[13] Wannan wani dalili ne na halitta na kai tsaye na raguwar hydraulic conductivity.

Bioclogging galibi ana lura da shi a cikin yanayi mai cike da abubuwa, amma ana nazarin bioclogging a cikin yanayin da ba a cika ba.[14]

Binciken filin

gyara sashe

Matsalar filin da matakan da za a iya magance su

gyara sashe

Bioclogging wani muhimmin batu ne a cikin tsarin muhalli da ruwa na wucin gadi. Ga wasu takamaiman matsalolin filin da suka shafi bioclogging da kuma yiwuwar matakan da suka dace.

  1. Bioclogging yawanci yana faruwa ne yayin ci gaba da shiga ciki tafkuna a wurare kamar tafkunan sake caji na wucin gadi [15] da rami. [16] Rage yawan shigarwa saboda bioclogging a cikin shigarwa yana rage ingancin irin waɗannan tsarin. Don rage tasirin bioclogging, gyaran ruwa don rage Abubuwan da aka dakatar, abubuwan gina jiki, da carbon na halitta na iya zama dole. Kashewa na yau da kullun da cirewa ta jiki na Layer na toshewa na iya zama ingantaccen matsakaici.
  2. Hakazalika, filayen magudanar ruwa suna da saukin kamuwa da bioclogging da farko saboda ci gaba da gudana na Ruwa mai guba jiki.[17][18] Abubuwan kwayoyin da ke haifar da bioclogging a cikin tankin septic wani lokacin ana kiransu biomat.[19] Shirya ruwa ta hanyar tacewa ko rage nauyin tsarin na iya jinkirta gazawar tsarin ta hanyar bioclogging. Tsarin tace yashi mai saurin gudu yana fama da bioclogging.[20] Baya ga matakan da aka ambata a sama, ana iya yin aiki da tsaftacewa ko wanke yashi don cire fim ɗin biofilm da dawo da yashi.
  3. A cikin tsarin kogin, bioclogging na iya yin tasiri sosai ga sake caji, musamman a yankuna masu bushe inda koguna suka rasa sun zama ruwan dare.[21] A sakamakon bioclogging, haɗin tsakanin ruwa na sama da ruwa na ƙasa a cikin tsarin kogi yana da tasiri. Ci gaban wani biofilm-induced clogging layer na iya haifar da disconnection, canza yanayin ruwa na halitta tsakanin koguna da aquifers.[22]
  4. Bioclogging kuma damuwa ne a cikin aquifers, musamman lokacin da aka cire ruwa ta hanyar rijiyoyin ruwa a ƙasa da teburin ruwa.[23] A cikin watanni da shekaru na ci gaba da aiki na rijiyoyin ruwa, suna iya nuna raguwa a hankali a cikin aikin saboda bioclogging ko wasu hanyoyin toshewa.[24] Bioclogging na iya shafar aiki mai ɗorewa na famfo na zafi na ƙasa.[25] Hanyoyi na yau da kullun don magance bioclogging sun haɗa da amfani da phosphate, wani abu mai mahimmanci don biofilms na ƙarfe-bacteria, da kuma amfani da chlorine da fungicides don magance matsalolin ƙwayoyin cuta. Backwashing wata hanya ce ta yau da kullun don magance toshewa gabaɗaya, gami da bioclogging.[11][25]

A wasu mahalli, bioclogging yana da tasiri sosai ga tsarin ruwa. Ga wasu misalai.

  1. Bioclogging yana taka muhimmiyar rawa wajen rufe ƙasan tafkunan daidaitawa don maganin ruwan sharar gida.[26] Hakazalika, ana iya yin allurar rigakafin hanyoyin ban ruwa don kula da ruwa tare da algae da ƙwayoyin cuta don inganta bioclogging don rage asarar ruwa.[27]
  2. Juyawa zuwa kayan kwalliya, kamar kayan kwalliya na yumɓu, bioclogging ya fito ne a matsayin wani abu mai fa'ida. Ana amfani da layin yumɓu a cikin zubar da shara don rage gurɓataccen yanayi daga zubar da ƙasa zuwa yanayin ƙasa da ke kewaye. Gudanar da ruwa na yumbu ya zama ƙasa da ƙimar asali saboda ƙarancin halittu, wanda ke haifar da microorganism a cikin leachate da sararin samaniya a cikin yumbu.[28][29]
  3. Bioclogging abu ne na yau da kullun a cikin wuraren da aka gina waɗanda aka tsara don magance ruwa daban-daban da aka gurbata.[30] Musamman, a cikin wuraren da ke da ruwa tare da kwarara a kwance, hanyoyin kwarara da suka fi dacewa da guje wa ɓangaren da aka toshe na iya inganta ingancin tsarin magani.[31]
  4. Tsarin biofilm yana taka muhimmiyar rawa a cikin bioremediation, musamman a cikin kula da gurɓataccen ruwa mai zurfi.[32] An kafa shingen da ke iya shiga don ƙunshe da kwararar ruwa ta hanyar bioclogging da kuma lalata gurɓataccen ƙwayoyin cuta. [33] Ya kamata a bincika kwararar gurbataccen abu a hankali saboda hanyar da ta fi dacewa a cikin shingen na iya rage ingancin gyaran.[34]
  5. A cikin hakar man fetur, ana amfani da ingantaccen fasahar dawo da man fetur don kara yawan hakar man daga filayen mai. Ruwan da aka yi wa allura yana kawar da mai a cikin tafkin wanda ake kaiwa ga rijiyoyin dawowa. Kamar yadda tafkin ba daidai ba ne a cikin permeability, ruwan da aka yi amfani da shi yana wucewa ta cikin wani yanki mai zurfi kuma ba ya wucewa ta yankin da mai ya kasance. A cikin wannan halin, ana iya amfani da fasahar gyaran bayanan ƙwayoyin cuta, wanda ke yin allurar ƙwayoyin ƙwayoyin halitta a cikin babban yanki mai shiga don inganta bioclogging.[35] Wani nau'i ne na ingantaccen man fetur na microbial.
  6. Halin da za a iya amfani da shi a cikin aikin injiniya na geotechnical yana ƙarƙashin bincike, musamman don inganta kayan aikin ƙasa. Wannan ya haɗa da dabarun kamar rage porosity da hydraulic conductivity, da haɓaka ƙarfin shear ta hanyar biocementation, don haka inganta ƙasa don gini da aikace-aikacen muhalli.[36]

Dubi kuma

gyara sashe
  • Biofilm
  • Gudanar da ruwa
  • Jirgin zubar da shara
  • Karfafa dawo da man fetur na ƙwayoyin cuta
  • Tankin Septic
  • Matar yashi mai saurin gudu

Manazarta

gyara sashe

An gabatar da wannan labarin zuwaWikiJournal na Kimiyyadon wajeBinciken takwarorinsu na ilimia cikin 2023 (rahotanni na mai bitaRashin amfani da shi An sake sabunta abubuwan da ke cikin shafin Wikipedia a ƙarƙashinCC-BY-SA-3.0lasisi (2024Rashin amfani da shi Sashe na rikodin kamar yadda aka sake dubawa shine:.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}Katsutoshi Seki; da sauransu (14 Fabrairu 2024).  "Bioclogging" (PDF) . WikiJournal na Kimiyya. 7 (1): 1. Rubuce-rubuce na 10.15347/WJS/2024.002. ISSN 2470-6345.  Wikidata Q116782181

  1. Allison, L.E. (1947). "Effect of microorganisms on permeability of soil under prolonged submergence". Soil Science. 63 (6): 439–450. Bibcode:1947SoilS..63..439A. doi:10.1097/00010694-194706000-00003. S2CID 97693977.
  2. Baveye, P.; Vandevivere, P.; Hoyle, B.L.; DeLeo, P.C.; de Lozada, D.S. (2006). "Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials" (PDF). Critical Reviews in Environmental Science and Technology. 28 (2): 123–191. doi:10.1080/10643389891254197.
  3. Gette-Bouvarot, M.; Mermillod-Blondin, F.; Angulo-Jaramillo, R.; Delolme, C.; Lemoine, D.; Lassabatere, L.; Loizeau, S.; Volatier, L. (2014). "Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance" (PDF). Ecohydrology. 7 (3): 950–964. Bibcode:2014Ecohy...7..950G. doi:10.1002/eco.1421. S2CID 129758850.
  4. Xia, L.; Zheng, X.; Shao, H.; Xin, J.; Sun, Z.; Wang, L. (2016). "Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns". Journal of Hydrology. 535: 293–300. Bibcode:2016JHyd..535..293X. doi:10.1016/j.jhydrol.2016.01.075.
  5. Jiang, Y.; Matsumoto, S. (1995). "Change in microstructure of clogged soil in soil wastewater treatment under prolonged submergence". Soil Science and Plant Nutrition. 41 (2): 207–213. Bibcode:1995SSPN...41..207J. doi:10.1080/00380768.1995.10419577.
  6. Seki, K.; Miyazaki, T.; Nakano, M. (1996). "Reduction of hydraulic conductivity due to microbial effects" (PDF). Transactions of Japanese Society of Irrigation, Drainage and Reclamation Engineering. 181: 137–144. doi:10.11408/jsidre1965.1996.137.
  7. Seki, K.; Miyazaki, T.; Nakano, M. (1998). "Effect of microorganisms on hydraulic conductivity decrease in infiltration" (PDF). European Journal of Soil Science. 49 (2): 231–236. Bibcode:1998EuJSS..49..231S. doi:10.1046/j.1365-2389.1998.00152.x. S2CID 97173198.
  8. Taylor, S.W.; Milly, P.C.D.; Jaffé, P.R. (1990). "Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability". Water Resources Research. 26 (9): 2161–2169. Bibcode:1990WRR....26.2161T. doi:10.1029/WR026i009p02161.
  9. Zhao, L.; Zhu, W.; Tong, W. (2009). "Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands" (PDF). Journal of Environmental Sciences. 21 (6): 750–757. Bibcode:2009JEnvS..21..750Z. doi:10.1016/S1001-0742(08)62336-0. PMID 19803078.
  10. Kim, J.; Choi, H.; Pachepsky, Y.A. (2010). "Biofilm morphology as related to the porous media clogging" (PDF). Water Research. 44 (4): 1193–1201. Bibcode:2010WatRe..44.1193K. doi:10.1016/j.watres.2009.05.049. PMID 19604533.
  11. Seki, K.; Miyazaki, T. (2001). "A mathematical model for biological clogging of uniform porous media" (PDF). Water Resources Research. 37 (12): 2995–2999. Bibcode:2001WRR....37.2995S. doi:10.1029/2001WR000395. S2CID 129625309.
  12. Reynolds, W.D.; Brown, D.A.; Mathur, S.P.; Overend, R.P. (1992). "Effect of in-situ gas accumulation on the hydraulic conductivity of peat". Soil Science. 153 (5): 397–408. Bibcode:1992SoilS.153..397R. doi:10.1097/00010694-199205000-00007. S2CID 93225879.
  13. Houot, S.; Berthelin, J. (1992). "Submicroscopic studies of iron deposits occurring in field drains: Formation and evolution". Geoderma. 52 (3–4): 209–222. Bibcode:1992Geode..52..209H. doi:10.1016/0016-7061(92)90037-8.
  14. Volk, E.; Iden, S.C.; Furman, A.; Durner, W.; Rosenzweig, R. (2016). "Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm". Water Resources Research. 52 (8): 5813–5828. Bibcode:2016WRR....52.5813V. doi:10.1002/2016WR018866.
  15. Bouwer, H. (2002). "Artificial recharge of groundwater: hydrogeology and engineering" (PDF). Hydrogeology Journal. 10 (1): 121–142. Bibcode:2002HydJ...10..121B. doi:10.1007/s10040-001-0182-4.
  16. Furumai, H.; Jinadasa, H.K.P.K.; Murakami, M.; Nakajima, F.; Aryal, R.K. (2005). "Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model" (PDF). Water Science and Technology. 52 (5): 53–60. doi:10.2166/wst.2005.0108. PMID 16248180.
  17. Kristiansen, R. (1981). "Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanism and soil physical environment". Journal of Environmental Quality. 10 (3): 353–357. Bibcode:1981JEnvQ..10..353K. doi:10.2134/jeq1981.00472425001000030020x.
  18. Nieć, J.; Spychała, M.; Zawadzki, P. (2016). "New approach to modelling of sand filter clogging by septic tank effluent" (PDF). Journal of Ecological Engineering. 17 (2): 97–107. doi:10.12911/22998993/62296.
  19. "Septic Biomat: defined, properties". InspectAPedia. Retrieved March 22, 2017.
  20. Mauclaire, L.; Schürmann, A.; Thullner, M.; Gammeter, S.; Zeyer, J. (2004). "Slow sand filtration in a water treatment plant: biological parameters responsible for clogging". Journal of Water Supply: Research and Technology-Aqua. 53 (2): 93–108. doi:10.2166/aqua.2004.0009.
  21. Newcomer, M.E.; Hubbard, S.S.; Fleckenstein, J.H.; Maier, U.; Schmidt, C.; Thullner, M.; Ulrich, C.; lipo, N.; Rubin, Y. (2016). "Simulating bioclogging effects on dynamic riverbed permeability and infiltration". Water Resources Research. 52 (4): 2883–2900. Bibcode:2016WRR....52.2883N. doi:10.1002/2015WR018351. S2CID 130425627.
  22. Xian, Y.; Jin, M.; Zhan, H.; Liu, Y. (2019). "Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater". Water Resources Research. 55 (5): 3882–3903. Bibcode:2019WRR....55.3882X. doi:10.1029/2019WR024826.
  23. van Beek, C.G.E.M.; van der Kooij, D. (1982). "Sulfate-reducing bacteria in ground water from clogging and non-clogging shallow wells in the netherlands river region". Ground Water. 20 (3): 298–302. Bibcode:1982GrWat..20..298B. doi:10.1111/j.1745-6584.1982.tb01350.x.
  24. "Well remediation and rehabilitation". Groundwater Engineering Limited. Archived from the original on March 22, 2017. Retrieved March 22, 2017.
  25. 25.0 25.1 Song, W.; Liu, X.; Zheng, T.; Yang, J. (2020). "A review of recharge and clogging in sandstone aquifer". Geothermics. 87: 101857. Bibcode:2020Geoth..8701857S. doi:10.1016/j.geothermics.2020.101857.
  26. Davis, S.; Fairbanks, W.; Weisheit, H. (1973). "Dairy waste ponds effectively self-sealing". Transactions of the ASAE. 16 (1): 69–71. doi:10.13031/2013.37447.
  27. Ragusa, S.R.; de Zoysa, D.S.; Rengasamy, P. (1994). "The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil". Irrigation Science. 15 (4): 159–166. Bibcode:1994IrrSc..15..159R. doi:10.1007/BF00193683. S2CID 35184810.
  28. Kamon, M.; Zhang, H.; Katsumi, T. (2002). "Redox effect on the hydraulic conductivity of clay liner" (PDF). Soils and Foundations. 42 (6): 79–91. Bibcode:2002SoFou..42...79K. doi:10.3208/sandf.42.6_79.
  29. Tang, Q.; Wang, H.Y.; Chen, H.; Li, P.; Tang, X.W.; Katsumi, T. (2015). "Long-term hydraulic conductivity of compacted clay permeated with landfill leachates" (PDF). Japanese Geotechnical Society Special Publication. 2 (53): 1845–1848. doi:10.3208/jgssp.CHN-52.
  30. ,Moreira, F.D.; Dias, E.H.O. (2020). "Constructed wetlands applied in rural sanitation: A review". Environmental Research. 190: 110016. Bibcode:2020ER....19010016M. doi:10.1016/j.envres.2020.110016. PMID 32768473.
  31. Suliman, F.; French, H.K.; Haugen, L.E.; Søvik, A.K. (2006). "Change in flow and transport patterns in horizontal subsurface flow constructed wetlands as a result of biological growth". Ecological Engineering. 27 (2): 124–133. Bibcode:2006EcEng..27..124S. doi:10.1016/j.ecoleng.2005.12.007.
  32. Lee, M.D.; Thomas, J.M.; Borden, R.C.; Bedient, P.B.; Ward, C.H.; Wilson, J.T. (1998). "Biorestoration of aquifers contaminated with organic compounds" (PDF). Critical Review in Environmental Control. 18 (1): 29–89. doi:10.1080/10643388809388342.
  33. Komlos, J.; Cunningham, A.B; Camper, A.K.; Sharp, R.R. (2004). "Biofilm barriers to contain and degrade dissolved tricholoroethylene". Environmental Progress. 23 (1): 69–77. Bibcode:2004EnvPr..23...69K. doi:10.1002/ep.10003.
  34. Seki, K.; Thullner, M.; Hanada, J.; Miyazaki, T. (2006). "Moderate bioclogging leading to preferential flow paths in biobarriers" (PDF). Ground Water Monitoring & Remediation. 26 (3): 68–76. Bibcode:2006GMRed..26c..68S. doi:10.1111/j.1745-6592.2006.00086.x. S2CID 97009671.
  35. Lappan, R.E.; Fogler, H.S. (1996). "Reduction of porous media permeability from in situ leuconostoc mesenteroides growth and dextran production". Biotechnology and Bioengineering. 50 (1): 6–15. CiteSeerX 10.1.1.1017.5978. doi:10.1002/(SICI)1097-0290(19960405)50:1<6::AID-BIT2>3.0.CO;2-L. PMID 18626894. S2CID 803784.
  36. Ivanov, V.; Chu, J. (2008). "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ". Reviews in Environmental Science and Bio/Technology. 7 (2): 139–153. Bibcode:2008RESBT...7..139I. doi:10.1007/s11157-007-9126-3.